Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 80(7): 865-875, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741556

RESUMO

OBJECTIVE: Janus kinase inhibitors (JAKinibs) are efficacious in rheumatoid arthritis (RA) with variable reported rates of adverse events, potentially related to differential JAK family member selectivity. Filgotinib was compared with baricitinib, tofacitinib and upadacitinib to elucidate the pharmacological basis underlying its clinical efficacy and safety. METHODS: In vitro JAKinib inhibition of signal transducer and activator of transcription phosphorylation (pSTAT) was measured by flow cytometry in peripheral blood mononuclear cells and whole blood from healthy donors and patients with RA following cytokine stimulation of distinct JAK/STAT pathways. The average daily pSTAT and time above 50% inhibition were calculated at clinical plasma drug exposures in immune cells. The translation of these measures was evaluated in ex vivo-stimulated assays in phase 1 healthy volunteers. RESULTS: JAKinib potencies depended on cytokine stimulus, pSTAT readout and cell type. JAK1-dependent pathways (interferon (IFN)α/pSTAT5, interleukin (IL)-6/pSTAT1) were among the most potently inhibited by all JAKinibs in healthy and RA blood, with filgotinib exhibiting the greatest selectivity for JAK1 pathways. Filgotinib (200 mg once daily) had calculated average daily target inhibition for IFNα/pSTAT5 and IL-6/pSTAT1 that was equivalent to tofacitinib (5 mg two times per day), upadacitinib (15 mg once daily) and baricitinib (4 mg once daily), with the least average daily inhibition for the JAK2-dependent and JAK3-dependent pathways including IL-2, IL-15, IL-4 (JAK1/JAK3), IFNγ (JAK1/JAK2), granulocyte colony stimulating factor, IL-12, IL-23 (JAK2/tyrosine kinase 2) and granulocyte-macrophage colony-stimulating factor (JAK2/JAK2). Ex vivo pharmacodynamic data from phase 1 healthy volunteers clinically confirmed JAK1 selectivity of filgotinib. CONCLUSION: Filgotinib inhibited JAK1-mediated signalling similarly to other JAKinibs, but with less inhibition of JAK2-dependent and JAK3-dependent pathways, providing a mechanistic rationale for its apparently differentiated efficacy:safety profile.


Assuntos
Antirreumáticos/farmacologia , Citocinas/efeitos dos fármacos , Inibidores de Janus Quinases/farmacologia , Janus Quinases/efeitos dos fármacos , Piridinas/farmacologia , Triazóis/farmacologia , Artrite Reumatoide , Azetidinas/farmacologia , Células Cultivadas , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Piperidinas/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia
2.
BMC Rheumatol ; 5(1): 15, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781343

RESUMO

BACKGROUND: B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. METHODS: Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. RESULTS: In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. CONCLUSIONS: Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN.

3.
ACS Med Chem Lett ; 11(4): 506-513, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292557

RESUMO

Spleen tyrosine kinase (SYK) is a critical regulator of signaling in a variety of immune cell types such as B-cells, monocytes, and macrophages. Accordingly, there have been numerous efforts to identify compounds that selectively inhibit SYK as a means to treat autoimmune and inflammatory diseases. We previously disclosed GS-9973 (entospletinib) as a selective SYK inhibitor that is under clinical evaluation in hematological malignancies. However, a BID dosing regimen and drug interaction with proton pump inhibitors (PPI) prevented development of entospletinib in inflammatory diseases. Herein, we report the discovery of a second-generation SYK inhibitor, GS-9876 (lanraplenib), which has human pharmacokinetic properties suitable for once-daily administration and is devoid of any interactions with PPI. Lanraplenib is currently under clinical evaluation in multiple autoimmune indications.

4.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282825

RESUMO

Graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HCT). The tyrosine kinase SYK contributes to both acute and chronic GVHD development, making it an attractive target for GVHD prevention. Entospletinib (ENTO) is a second-generation highly selective SYK inhibitor with a high safety profile. Potential utility of ENTO as GVHD prophylaxis in patients was examined using a preclinical mouse model of eye and skin GVHD and ENTO-compounded chow. We found that early SYK inhibition improved blood immune cell reconstitution in GVHD mice and prolonged survival, with 60% of mice surviving to day +120 compared with 10% of mice treated with placebo. Compared with mice receiving placebo, mice receiving ENTO had dramatic improvements in clinical eye scores, alopecia scores, and skin scores. Infiltrating SYK+ cells expressing B220 or F4/80, resembling SYK+ cells found in lichenoid skin lesions of chronic GVHD patients, were abundant in the skin of placebo mice but were rare in ENTO-treated mice. Thus, ENTO given early after HCT safely prevented GVHD.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Indazóis/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/administração & dosagem , Quinase Syk/antagonistas & inibidores , Administração Oral , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Olho/efeitos dos fármacos , Olho/imunologia , Olho/patologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Camundongos , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Análise de Sobrevida , Quinase Syk/imunologia , Quinase Syk/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
5.
Thromb Res ; 170: 109-118, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30172129

RESUMO

INTRODUCTION: Spleen tyrosine kinase (SYK) mediates signal transduction in multiple hematopoietic cells, including platelets. SYK signals downstream of immunoreceptors and SYK inhibition may ameliorate disease pathology in multiple autoimmune disorders; however, the impact of SYK inhibition in platelets and its potential relevance to bleeding is not fully understood. These studies evaluated the effect of an oral SYK inhibitor, GS-9876, on platelets in vitro and in vivo, and the impact of GS-9876 plus non-steroidal anti-inflammatory drugs (NSAIDs) on platelet aggregation. MATERIAL AND METHODS: The effect of GS-9876 on platelet activation, aggregation, and binding was characterized by western blotting, aggregometry, fluorescence-activated cell sorting, and microscopy techniques. The effect of GS-9876 on in vivo bleeding time (BT) was determined in cynomolgus monkeys and humans. RESULTS: GS-9876 inhibited glycoprotein VI (GPVI)-induced phosphorylation of linker for activation of T cells and phospholipase Cγ2, platelet activation and aggregation in human whole blood, and platelet binding to collagen under arterial flow. Ex vivo, GPVI-stimulated platelet aggregation was inhibited in GS-9876-treated monkeys without a concomitant increase in BT. Similarly, orally administered GS-9876 did not increase BT in humans. No in vitro additive effects on inhibition of platelet aggregation were observed with GS-9876 plus NSAIDs in human blood. CONCLUSIONS: GS-9876 inhibited SYK activity in platelets via the GPVI receptor without prolonging BT in monkeys or humans. Furthermore, GS-9876 did not increase inhibition of platelet aggregation by NSAIDs in vitro, suggesting that these agents can potentially be combined without increasing bleeding risk in humans.


Assuntos
Plaquetas/metabolismo , Hemostasia/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Quinase Syk/antagonistas & inibidores , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Adulto Jovem
6.
Int J Immunopathol Pharmacol ; 32: 2058738418783404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29923438

RESUMO

Non-selective inhibitors of spleen tyrosine kinase (SYK) efficiently suppress disease in T cell-dependent models of crescentic glomerulonephritis. However, the therapeutic potential of selective SYK inhibitors in this disease has not been established. In addition, we lack knowledge regarding SYK expression in non-myeloid cells in glomerulonephritis. We addressed these two issues in a rat model of nephrotoxic serum nephritis (NTN) using a SYK inhibitor, GS-492429. Disease was induced in Sprague-Dawley rats (Study 1) or Wistar-Kyoto (WKY) rats (Study 2) by immunization with sheep IgG and administration of sheep anti-rat nephrotoxic serum. Animals were untreated or received GS-492429 (30 mg/kg/bid) or vehicle treatment from 2 h before nephrotoxic serum injection until being killed 3 or 24 h later (Study 1) or 14 days later (Study 2). Two-colour confocal microscopy found that SYK expression in NTN kidney was restricted to myeloid cells and platelets, with no evidence of SYK expression by T cells, mesangial cells, podocytes or tubular epithelial cells. In Study 1, GS-492429 treatment significantly reduced glomerular neutrophil and macrophage infiltration, with protection from glomerular thrombosis and proteinuria. In Study 2, GS-492429 treatment reduced glomerular crescent formation by 70% on day 14 NTN in conjunction with reduced glomerular thrombosis, glomerulosclerosis and tubular damage. This was accompanied by a marked reduction in markers of inflammation (CCL2, TNF-α, NOS2, MMP-12). Importantly, the protective effects of GS-492429 were independent of T cell infiltration and activation and independent of JAK/STAT3 signalling. In conclusion, this study demonstrates that a SYK inhibitor can suppress the development of crescentic glomerulonephritis through effects upon myeloid cells and platelets.


Assuntos
Glomerulonefrite/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinase Syk/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Feminino , Glomerulonefrite/enzimologia , Glomerulonefrite/patologia , Testes de Função Renal , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Masculino , Ratos Endogâmicos WKY , Ratos Sprague-Dawley
7.
Biochem Pharmacol ; 151: 282-290, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408488

RESUMO

Despite improved therapy, rheumatoid arthritis (RA) remains an unmet medical need. Previous efforts to validate therapeutic targets in the mitogen-activated protein kinase (MAPK) family have had minimal success. Therefore, we evaluated the potential for targeting an upstream MAPK, namely apoptosis signal-regulating kinase 1 (ASK1), as an alternative approach. ASK1 protein and gene expression were observed in RA and osteoarthritis (OA) synovium as determined by immunohistochemistry (IHC) and qPCR, respectively, particularly in the synovial intimal lining. For RA, but not OA synovium, ASK1 correlated with IL-1ß and TNF gene expression. ASK1 was also expressed by cultured fibroblast-like synoviocytes (FLS), with significantly higher levels in RA compared with OA cells. IL-1ß and TNF stimulation significantly increased ASK1 expression in a time-and concentration-dependent manner in cultured FLS. ASK1 promoter activity was significantly increased by IL-1ß and TNF and was dependent on an upstream RelA binding motif. A selective small molecule ASK1 inhibitor reduced RA FLS invasion, migration and proliferation in vitro and decreased arthritis severity in the rat collagen-induced arthritis (CIA) model. In summary, our findings demonstrate that ASK1 modulates signaling pathways relevant to RA in vitro and in vivo. It is induced by inflammatory cytokines through the activation of NF-κB, which could provide some site- and event specificity. Thus, inhibitors of the upstream MAPK ASK1 could be a novel approach to treating inflammatory arthritis.


Assuntos
Artrite Reumatoide/enzimologia , MAP Quinase Quinase Quinase 5/metabolismo , Osteoartrite/enzimologia , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/imunologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Regulação da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/genética , Terapia de Alvo Molecular , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Ratos Endogâmicos Lew , Transdução de Sinais , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia
8.
Transplantation ; 101(8): e240-e248, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28594748

RESUMO

BACKGROUND: Organ transplantation into sensitized patients with preexisting donor-specific antibodies (DSA) is very challenging. Spleen tyrosine kinase (Syk) promotes leukocyte recruitment and activation via signaling through various cell surface receptors. We investigated whether a selective Syk inhibitor (GS-492429) could suppress antibody-mediated rejection (AMR) in a rat model of AMR in sensitized recipients. METHODS: Recipient Lewis rats (RT1) were immunized with donor (Dark Agouti, RT1) spleen cells (day -5). Recipients underwent bilateral nephrectomy and orthotopic renal transplantation (day 0). Cellular rejection was minimized by tacrolimus treatment from day -1. Groups received GS-492429 (30 mg/kg, twice a day) (n = 11) or vehicle (n = 12) from 1 hour before transplantation until being killed on day 3. RESULTS: Vehicle-treated recipients developed graft dysfunction on day 1 which rapidly worsened by day 3. Histology showed severe damage (thrombosis, acute tubular injury, capillaritis) and infiltration of many Syk leukocytes. GS-492429 did not affect graft dysfunction on day 1, but treatment reduced allograft damage and prevented the rapid deterioration of graft function on day 3. GS-492429 reduced the prominent macrophage infiltrate and reduced the M1 proinflammatory response. Neutrophil and NK cell infiltration and capillary thrombosis were also significantly reduced by GS-492429 treatment. Serum DSA levels and the deposition of IgG and C4d in the allograft were equivalent in the 2 groups. CONCLUSIONS: Treatment with a Syk inhibitor significantly reduced renal allograft injury in a model of severe antibody-mediated damage in highly sensitized recipients. Further studies are warranted to determine whether Syk inhibition is a potential adjunctive treatment in clinical AMR.


Assuntos
Anticorpos/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Quinase Syk/antagonistas & inibidores , Transplantados , Doença Aguda , Animais , Western Blotting , Modelos Animais de Doenças , Rejeição de Enxerto/enzimologia , Rejeição de Enxerto/imunologia , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Quinase Syk/metabolismo , Transplante Homólogo
9.
Clin Drug Investig ; 37(2): 195-205, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27785737

RESUMO

BACKGROUND AND OBJECTIVES: Entospletinib is a selective, reversible, adenosine triphosphate-competitive small-molecule spleen tyrosine kinase (SYK) inhibitor that blocks B cell receptor-mediated signaling and proliferation in B lymphocytes. This study evaluated the safety, pharmacokinetics, and pharmacodynamics of entospletinib in a double-blind, single/multiple ascending dose study in healthy volunteers. METHODS: In sequential cohorts, 120 subjects received entospletinib (25-1200 mg; fasted) as single or twice-daily oral doses for 7 days. Along with pharmacokinetics, the study assessed functional inhibition of ex vivo anti-immunoglobulin E-stimulated CD63 expression on basophils and pervanadate-evoked phosphorylated SYK (pSYK) Y525. Safety and tolerability were assessed throughout the study. RESULTS: Entospletinib was generally well-tolerated over a 48-fold dose range. Adverse events (AEs) were generally mild to moderate, with no AE-driven study drug discontinuations noted. Entospletinib displayed a median plasma half-life of 9-15 h; entospletinib exposures reached a plateau at ≥600 mg twice daily (likely due to solubility-limited absorption) and provided >90% CD63 inhibition at peak concentrations and >60% inhibition at trough concentrations (corresponding pSYK inhibition of >70 and >50%). CONCLUSION: The overall safety, pharmacokinetics, and pharmacodynamics profiles of entospletinib support further clinical evaluation.


Assuntos
Quinase Syk/antagonistas & inibidores , Adolescente , Adulto , Linfócitos B/efeitos dos fármacos , Basófilos/efeitos dos fármacos , Estudos de Coortes , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Interações Alimento-Droga , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Tetraspanina 30/biossíntese , Tetraspanina 30/efeitos dos fármacos , Vanadatos/farmacologia , Adulto Jovem
10.
Ther Adv Hematol ; 7(3): 157-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27247756

RESUMO

The B-cell receptor signaling pathway has emerged as an important therapeutic target in chronic lymphocytic leukemia and other B-cell malignancies. Novel agents have been developed targeting the signaling enzymes spleen tyrosine kinase (SYK), Bruton's tyrosine kinase, and phosphoinositide 3-kinase delta. This review discusses the rationale for targeting these enzymes, as well as the preclinical and clinical evidence supporting their role as therapeutic targets, with a particular focus on SYK inhibition with entospletinib.

11.
Blood ; 127(20): 2411-5, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26968534

RESUMO

Although agents targeting B-cell receptor signaling have provided practice-changing results in relapsed chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL), they require prolonged administration and provide incomplete responses. Given synergistic preclinical activity with phosphatidylinositol 3-kinase δ and spleen tyrosine kinase inhibition, this phase 2 study evaluated the safety and efficacy of the combination of idelalisib and entospletinib. Eligible patients with relapsed or refractory CLL or NHL underwent intrapatient dose escalation with each agent. With a median treatment exposure of 10 weeks, 60% and 36% of patients with CLL or follicular lymphoma, respectively, achieved objective responses. However, the study was terminated early because of treatment-emergent pneumonitis in 18% of patients (severe in 11 of 12 cases). Although most patients recovered with supportive measures and systemic steroids, 2 fatalities occurred and were attributed to treatment-emergent pneumonitis. Increases of interferon-γ and interleukins 6, 7, and 8 occurred over time in patients who developed pneumonitis. Future studies of novel combinations should employ conservative designs that incorporate pharmacodynamics/biomarker monitoring. These investigations should also prospectively evaluate plasma cytokine/chemokine levels in an attempt to validate biomarkers predictive of response and toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01796470.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Indazóis/efeitos adversos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma não Hodgkin/tratamento farmacológico , Pneumonia/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Purinas/efeitos adversos , Pirazinas/efeitos adversos , Quinazolinonas/efeitos adversos , Terapia de Salvação , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Citocinas/metabolismo , Término Precoce de Ensaios Clínicos , Feminino , Humanos , Indazóis/administração & dosagem , Leucemia Linfocítica Crônica de Células B/enzimologia , Linfoma não Hodgkin/enzimologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Purinas/administração & dosagem , Pirazinas/administração & dosagem , Quinazolinonas/administração & dosagem , Quinase Syk/antagonistas & inibidores
12.
Bioorg Med Chem Lett ; 26(2): 575-579, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26675441

RESUMO

BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.


Assuntos
Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridazinas/química , Piridazinas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Cães , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/metabolismo , Piridazinas/metabolismo , Piridazinas/farmacocinética , Pirimidinonas/metabolismo , Pirimidinonas/farmacocinética , Ratos , Tiofenos/metabolismo , Tiofenos/farmacocinética
13.
Bioorg Med Chem Lett ; 25(6): 1333-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25701252

RESUMO

SAR studies focused on improving the pharmacokinetic (PK) properties of the previously reported potent and selective Btk inhibitor CGI-1746 (1) resulted in the clinical candidate GDC-0834 (2), which retained the potency and selectivity of CGI-1746, but with much improved PK in preclinical animal models. Structure based design efforts drove this work as modifications to 1 were investigated at both the solvent exposed region as well as 'H3 binding pocket'. However, in vitro metabolic evaluation of 2 revealed a non CYP-mediated metabolic process that was more prevalent in human than preclinical species (mouse, rat, dog, cyno), leading to a high-level of uncertainly in predicting human pharmacokinetics. Due to its promising potency, selectivity, and preclinical efficacy, a single dose IND was filed and 2 was taken in to a single dose phase I trial in healthy volunteers to quickly evaluate the human pharmacokinetics. In human, 2 was found to be highly labile at the exo-cyclic amide bond that links the tetrahydrobenzothiophene moiety to the central aniline ring, resulting in insufficient parent drug exposure. This information informed the back-up program and discovery of improved inhibitors.


Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinonas/química , Tiofenos/química , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Ratos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/farmacocinética
14.
J Med Chem ; 57(9): 3856-73, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24779514

RESUMO

Spleen tyrosine kinase (Syk) is an attractive drug target in autoimmune, inflammatory, and oncology disease indications. The most advanced Syk inhibitor, R406, 1 (or its prodrug form fostamatinib, 2), has shown efficacy in multiple therapeutic indications, but its clinical progress has been hampered by dose-limiting adverse effects that have been attributed, at least in part, to the off-target activities of 1. It is expected that a more selective Syk inhibitor would provide a greater therapeutic window. Herein we report the discovery and optimization of a novel series of imidazo[1,2-a]pyrazine Syk inhibitors. This work culminated in the identification of GS-9973, 68, a highly selective and orally efficacious Syk inhibitor which is currently undergoing clinical evaluation for autoimmune and oncology indications.


Assuntos
Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/farmacologia , Baço/efeitos dos fármacos , Administração Oral , Animais , Células Cultivadas , Descoberta de Drogas , Humanos , Indazóis/administração & dosagem , Indazóis/química , Espectroscopia de Ressonância Magnética , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Pirazinas/administração & dosagem , Pirazinas/química , Ratos , Espectrometria de Massas por Ionização por Electrospray , Baço/enzimologia , Relação Estrutura-Atividade
15.
Int Rev Immunol ; 32(4): 397-427, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23886342

RESUMO

B-cell receptor (BCR) signaling is essential for normal B-cell development, selection, survival, proliferation, and differentiation into antibody-secreting cells. Similarly, this pathway plays a key role in the pathogenesis of multiple B-cell malignancies. Genetic and pharmacological approaches have established an important role for the Spleen tyrosine kinase (Syk), Bruton's tyrosine kinase (Btk), and phosphatidylinositol 3-kinase isoform p110delta (PI3Kδ) in coupling the BCR and other BCRs to B-cell survival, migration, and activation. In the past few years, several small-molecule inhibitory drugs that target PI3Kδ, Btk, and Syk have been developed and shown to have efficacy in clinical trials for the treatment of several types of B-cell malignancies. Emerging preclinical data have also shown a critical role of BCR signaling in the activation and function of self-reactive B cells that contribute to autoimmune diseases. Because BCR signaling plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, inhibition of this pathway may represent a promising new strategy for treating these diseases. This review summarizes recent achievements in the mechanism of action, pharmacological properties, and clinical activity and toxicity of these BCR signaling inhibitors, with a focus on their emerging role in treating lymphoid malignancies and autoimmune disorders.


Assuntos
Antineoplásicos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/metabolismo , Leucemia de Células B/tratamento farmacológico , Leucemia de Células B/metabolismo , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos B/fisiologia , Humanos
16.
J Pharmacol Exp Ther ; 338(1): 154-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521773

RESUMO

Bruton's tyrosine kinase (BTK) plays a critical role in the development, differentiation, and proliferation of B-lineage cells, making it an attractive target for the treatment of rheumatoid arthritis. The objective of this study was to evaluate the antiarthritis effect of GDC-0834 [R-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide], a potent and selective BTK inhibitor, and characterize the relationship between inhibition of BTK phosphorylation (pBTK) and efficacy. GDC-0834 inhibited BTK with an in vitro IC(50) of 5.9 and 6.4 nM in biochemical and cellular assays, respectively, and in vivo IC(50) of 1.1 and 5.6 µM in mouse and rat, respectively. Administration of GDC-0834 (30-100 mg/kg) in a rat collagen-induced arthritis (CIA) model resulted in a dose-dependent decrease of ankle swelling and reduction of morphologic pathology. An integrated disease progression pharmacokinetic/pharmacodynamic model where efficacy is driven by pBTK inhibition was fit to ankle-diameter time-course data. This model incorporated a transit model to characterize nondrug-related decreases in ankle swelling occurring at later stages of disease progression in CIA rats. The time course of ankle swelling in vehicle animals was described well by the base model. Simultaneous fitting of data from vehicle- and GDC-0834-treated groups showed that overall 73% inhibition of pBTK was needed to decrease the rate constant describing the ankle swelling increase (k(in)) by half. These findings suggest a high degree of pBTK inhibition is required for maximal activity of the pathway on inflammatory arthritis in rats.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Experimental/enzimologia , Modelos Químicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Tirosina Quinase da Agamaglobulinemia , Animais , Antirreumáticos/química , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Bovinos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/química , Pirimidinonas/química , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Tiofenos/química , Resultado do Tratamento
17.
Nat Chem Biol ; 7(1): 41-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21113169

RESUMO

Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1ß and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células Mieloides/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase da Agamaglobulinemia , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/farmacologia , Proteínas Tirosina Quinases/uso terapêutico , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...